
The Architecture of newmake

Table of contents

1 Revision history..2

2 Introduction.. 2

3 Organization of the file systems...2

3.1 cvsdir..2

3.2 cvsdir/cdk...2

3.3 cdk..3

3.4 cdkroot... 3

3.5 cdkflash.. 3

3.6 bootprefix...3

4 Organization of the files for Make... 4

5 Download-unpack-patch-configure-build-install-clean targets....................................4

6 Three main sets of targets...5

6.1 The development environment CDK... 5

6.2 YADD builds... 5

6.3 Flash images...8

7 Odds and Ends..10

7.1 GNU Make "Order-Only Prerequisites".. 10

7.2 Maneuvering within the make sources.. 10

8 References.. 11

9 Appendix. Top level Makefile.am..11

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

1. Revision history

Date Description

2006-04-15 Initial version.

2006-04-17 Added the References section.

2. Introduction

The present documents tries to give a description of the involved concepts in newmake.
The emphasis is on concepts, not on details. It will describe a large number, but not all of
the target. It does not aim at a complete up-to-date descriptions of all targets, their
prerequisites, side effects, etc. For this, the reader is referred to the sources, which even
contains some comments(!).

Good documentation is not program code translated to English.

The reader is supposed to know the "introductory" document, and to have some
experience and understanding of compiling programs in the GNU
automake/autoconf-environment.

The Tuxbox build system has grown over a long period of time. The original developers
are, with very few exceptions, no longer active within the project. In several cases, quite
horrible techniques have been employed. Newmake is an attempt to clean up some of the
problems; to solve it as it should have been done the first time. However, I have not went
through all components. There are still some fundamental problems inherited from "old
make".

Tuxbox uses the GNU automake/autoconf system. Understanding this on the surface is
not too hard, however understanding the inner workings, and its customizations is not a
trivial undertaking. Here we just mention that from the file configure.ac the
non-interactive configuration script configure is created, while a Makefile is
generated from the file Makefile.am. For this, some Tuxbox-specific m4-macros are
found in the file acinclude.m4.

3. Organization of the file systems

3.1. cvsdir

The top level directory that was checked out from CVS (it contains a subdirectory named
cdk) will be denoted cvsdir. (There is no make-variable with that name!)

3.2. cvsdir/cdk

Located as a subdirectory to cvsdir. This is the directory where the make-commands are

The Architecture of newmake

Page 2
Built with Apache Forrest
http://forrest.apache.org/

flash-yadds-newmake.html
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/configure.ac?rev=1.147.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/Makefile.am?rev=1.480.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/acinclude.m4?rev=1.8.4
http://forrest.apache.org/
http://forrest.apache.org/

issued. Corresponds to the make-variable buildprefix.

3.3. cdk

The file system $(hostprefix), for example /tuxbox/cdk, contains the "Cross
Development Kit (CDK)". (We will refer to it as cdk.) Contained therein is the cross C
and C++ compiler (with support files), as a number of utilities for creating and
manipulating programs to be run on the dBox. Also, some programs, built during the
tuxbox build, like mkflfs are installed here. Include-files for the C++-compiler and
stdc++ library are found here. Documentation files for some of the installed component
(man- and GNU info-files) are also installed. This directory hierarchy is build during the
"bootstrap" build.

3.4. cdkroot

The file hierarchy $(targetprefix) (typically /tuxbox/cdkroot) is mounted as
root file system for a YADD-setup. (We will refer to it as cdkroot.) However, it plays
some more roles. In the original makefile, images were built by first installing (using the
component's makefiles) in cdkroot, then selectively copying over selected files to the
image file systems. The directly hierarchy is "mainly" built during the cdk build,
however, some crucial components (belonging to the C library glibc) are installed
during the "bootstrap" build.

Through symbolic links, the above described cdk-directory depends on cdkroot, and
secondarily, through links from cdkroot to the kernel sources, on the kernel sources in
cvsdir/cvs/linux. In the future, it would be desirable to eliminate this dependency, in
my opinion also if this means multiple copies of the same file. "Single sourcing" does not
prohibit multiple copies, it means that you know where every copy came from.

Warning:
It is often tempting to delete cdkroot, in order to bring the compilation environment back to the state where the cross
development environment CDK has been build, but none of the real Tuxbox software. For reasons just described, this will
break CDK.

3.5. cdkflash

The file hierarchy $(flashprefix) (typically /tuxbox/cdkflash, henceforth
denoted by cdkflash) is a scratch area for building images. It will be described in detail
later. It can be deleted when needed/desired without any side effects.

3.6. bootprefix

For the purpose of this article, bootprefix is the target location of the yadd kernel and
the corresponding u-boot boot loader. Typically, this is the base directory for the TFTP
service.

The Architecture of newmake

Page 3
Built with Apache Forrest
http://forrest.apache.org/

dboxserver.html#The+TFTP+Server
dboxserver.html#The+TFTP+Server
http://forrest.apache.org/
http://forrest.apache.org/

4. Organization of the files for Make

There are hundreds of targets in the top level "Makefile". To improve the overview, it has
been split in different components. The top level Makefile.am, in the current version
1.480.2.21, is shown in the Appendix. This file first defines some high-level targets (in
terms of some other targets), then it includes a large number (presently 54) of makefile
fragments, defining other targets. The inclusion is preceeded by a comment stating the
purpose of the included fragment.

5. Download-unpack-patch-configure-build-install-clean targets

The Tuxbox software needs a number of third-party software. The build mechanism will
download the needed software sources on demand. These are stored in the directory
cvsdir/cdk/Archive. (When having several source trees on the disk, it is a good idea
to share this directory, to save disk space and downloads.) When "make-ing" the package,
the following things occur:

1. The package source code, typically with a .tar.gz or .tar.bz2 extension, is
downloaded to the cvsdir/cdk/Archive directory,

2. It is unpacked into a temporary directory, residing in the cdk directory,
3. In some cases, a patch (residing in the directory cvsdir/cdk/Patches is applied,
4. The package is build using a package specific build command, typically a

configure-command, followed by a make-command, possibly with parameters,
5. The package is installed, typically in cdkroot, typically with a "make

install"-command, possibly with parameters,
6. The build directory is deleted,
7. The successful build is recorded by creating a zero-length file, having the same name

as the package, in the directory cvsdir/cdk/.deps.

It was attempted to have this behavior completely parameterized, using the files
rules-make, rules-archive, rules-installrules-install-flash. To
this end, rules-make defines the package name, version, name of the build directory,
name of the current source code distribution file, a command to unpack and possibly to
patch. The file rules-archive contains a mapping from file names (as given in the
rules-make file) to download-URLs. Finally, rules-install and
rules-install-flash contain the commands to install the package. HEAD-make,
if configured for image building, first consults rules-install-flash for the install
rules, if not found there, it searches rules-install. If not configured for flash
images, it only searches rules-install. Newmake, for compatibility, first searches
rules-install-flash, then rules-install.

To the implementation: For every such package, configure.ac contains the a call to
the local autoconfig macro TUXBOX_RULES_MAKE (defined in acinclude.m4),
using the package name as argument. Thus, during executing of configure, a few Perl
programs are executed, operating on the rules-*, thereby defining the shell variables

The Architecture of newmake

Page 4
Built with Apache Forrest
http://forrest.apache.org/

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-make
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-archive
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-make
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-archive
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-make
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/configure.ac?rev=1.147.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/acinclude.m4?rev=1.8.4
http://forrest.apache.org/
http://forrest.apache.org/

DEPENDS_package, DIR_package, PREPARE_package, VERSION_package,
INSTALL_package, CLEANUP_package. Thus, in Makefile.am (or its included
parts), constructs like @VERSION_package@ can be used; when automake creates
Makefile out of Makefile.am, these will be appropriately substituted.

This has been an interesting, but not completely successful experiment. The
"parameterization" of the build has not been a success; every make rule still looks
different. To keep used versions in a separate file still is a good idea, however, this can
just as well be achieved with the include-mechanism of (auto-)make.

A re-write would be desirable.

6. Three main sets of targets

There are three main categories of targets in the Makefile: Targets for building the cross
compilation environment ("CDK"), targets for YADDs, and targets for flash image
creation.

6.1. The development environment CDK

The top level target is bootstrap. It turns out, that this is nothing but the gcc target.
Almost all non-cdk targets depend on this; in the case this dependency is not in the
Makefile, it is likely a bug. There are five components required:

directories
Sets up a directory skeleton in cdk and cdkroot.
binutils
Installs the GNU binutils, containing programs for creating and manipulating
binary files, like the assembler as and loader ld.
linuxdir
Installs the sources for the Linux kernel. This is necessary for building the
compiler, since the latter needs include files from the kernel.
glibc
The main C library. Since the C compiler needs this, first a "bootstrap
compiler" (target bootstrap_gcc, a mini C compiler, not needing glibc,
just intended to compile glibc) is first built.
gcc
The C cross compiler, in both C and C++-version.

These targets, with the exception of directories, are all
download-unpack-patch-configure-build-install-clean targets, in the sense above. The
rules are all found in the file make/bootstrap.mk.

6.2. YADD builds

Useful high-level targets include: yadd-neutrino, yadd-lcars, yadd-enigma,

The Architecture of newmake

Page 5
Built with Apache Forrest
http://forrest.apache.org/

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/bootstrap.mk?rev=1.1.2
http://forrest.apache.org/
http://forrest.apache.org/

and yadd-all.

yadd-neutrino
Installs the targets yadd-none, neutrino, as well as the plugins appropriate
for Neutrino (targets neutrino-plugins and fx2-plugins).
yadd-micro-neutrino
This target has mainly theoretical interest, to document the minimal usable
Neutrino installation.
yadd-enigma
Installs the targets yadd-none, enigma, as well as the plugins appropriate
for Enigma (targets enigma-plugins and fx2-plugins).
yadd-lcars
Installs the targets yadd-none, and lcars.
yadd-all
Installs the targets yadd-none, neutrino, enigma, and lcars.
yadd-none
The GUI-independent parts on a working yadd, consisting of bare-os,
together with a number of other, non-GUI-based targets (config,
tuxbox_tools, procps, ftpd, yadd-ucodes, version).
bare-os
The minimal setup to run Linux on the dBox, allows to login and ls. Depends
on targets yadd-u-boot, kernel-cdk, driver, yadd-etc, busybox,
modutils, tuxinfo.
plugins
Depends on neutrino-plugins, enigma-plugins, and fx2-plugins.
neutrino-plugins
The name is strictly speaking misleading; the target installs plugins usable
with any GUI, except for the plugins in target fx2-plugins. Presently, these
are tuxmail, tuxtxt, tuxcom, tuxcal, and vncviewer (all of these correspond to
their own individual targets). Defined in make/plugins.mk.
enigma-plugins
Plugins that require Enigma. Defined in make/plugins.mk.
fx2-plugins
Plugins that require the fx2-library. Usable by any GUI. Defined in
make/plugins.mk.
neutrino
The Neutrino GUI. Defined in make/neutrino.mk.
enigma
The Enigma GUI. Defined in make/enigma.mk.
lcars
The LCARS GUI. Defined in make/lcars.mk.
config
Installs some configuration files, presently cables.xml and
satellites.xml. Defined in make/dvb-config.mk.

The Architecture of newmake

Page 6
Built with Apache Forrest
http://forrest.apache.org/

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/plugins.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/plugins.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/plugins.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/neutrino.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/enigma.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/lcars.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/apps/dvb/config/cables.xml
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/apps/dvb/config/satellites.xml
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/dvb-config.mk?rev=1.1.2
http://forrest.apache.org/
http://forrest.apache.org/

tuxbox_tools
installs several different tools, most of which are pretty special, some (like
switch) absolutely essential. Defined in make/tuxbox_tools.mk.
procps
A download-unpack-patch-configure-build-install-clean target. Installs the
commands ps and top. Defined in make/rootutils.mk.
ftpd
The ftp-daemon. A download-unpack-patch-configure-build-install-clean
target. Defined in make/ftpd.mk.
yadd-ucodes
Provided that --with-ucodesdir was given when configuring, installs that
directory's content in the yadd. Defined in make/ucodes.mk.
version
Creates the /.version-file in the yadd. Defined in make/version.mk.
yadd-u-boot
Creates both the "smart" u-boot, as the "dumb" u-boot-yadd, both in the
$(bootprefix) directory. The default u-boot relies on a DHCP-server (a
bootp server will not do) to tell the name of the kernel file, and the location of
the NFS-root. Sometimes this is not available, for example when using the
Windows dBox manager. For these cases, an alternate u-boot is provided,
which, out-of-the-box, has the file name u-boot-yadd. This offers less
flexibility, having most file names/paths compiled in. Using this u-boot for
booting, the file name of the kernel is kernel-yadd, and the NFS root will be
yaddroot. As a side effect, a tool called mkimage, needed for building some
images, will be installed in cdk/bin. (This can also be achieved by calling the
target $(hostprefix)/bin/mkimage directly). Defined in
make/u-boot.mk.
kernel-cdk
Creates and installs the Linux kernel, using the path name
$(bootprefix)/kernel-cdk. Also installs the kernel and a map file in
cdkroot/boot. Defined in make/linuxkernel.mk.
driver
Compiles and installs device drivers, corresponding to the kernel. Defined in
make/linuxkernel.mk.
yadd-etc
Installs the content of the etc directory. Defined in make/etc.mk.
busybox
Configures the busybox for usage with yadd, compiles and installs it. This is
an download-unpack-patch-configure-build-install-clean target. Defined in
make/busybox.mk.
modutils
Installs some utilities for manipulating loadable kernel modules, e.g.
modprobe. This is an download-unpack-patch-configure-build-install-clean

The Architecture of newmake

Page 7
Built with Apache Forrest
http://forrest.apache.org/

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/tuxbox_tools.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/rootutils.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/ftpd.mk?rev=1.1.2
flash-yadds-newmake.html#Customization
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/ucodes.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/version.mk?rev=1.1.2
dboxserver.html#The+DHCP+Server
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/u-boot.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/linuxkernel.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/linuxkernel.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/etc.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/busybox.mk?rev=1.1.2
http://forrest.apache.org/
http://forrest.apache.org/

target. Defined in make/rootutils.mk.
tuxinfo
Installs the crucial tuxinfo program. This target is actually a subset of the
target tuxbox_tools. Defined in make/tuxbox_tools.mk.
camd2
Installs the camd2 program. This target is actually a subset of the target
tuxbox_tools. Defined in make/tuxbox_tools.mk.

6.3. Flash images

The high-level flash targets
flash-[neutrino,enigma,all]-[cramfs,squashfs,jffs2]-[1x,2x,all]
were introduced in the introductory article. Here we will describe the image building
process in more detail. In the sequel, gui will denote either neutrino or enigma,
filesystem will denote either cramfs, squashfs, or jffs2 (the file system of the root
partition), while imgXx will denote either img1x or img2x.

Fundamental for the creation of a gui-filesystem.imgXx-image are the three directory
hierarchies $(flashroot)/root (containing parts not depending on the root file
system type or the GUI), $(flashroot)/root-filesystem (containing parts
depending on the root file system, in particular the kernel and the drivers),
$(flashroot)/root-gui (containing the GUI component). There are no "short"
make targets for these directories, however they are all, with their full path names, make
targets. The flashable directories (root-gui-filesystem and var-gui) are created by
copying the contents of the previously mentioned three directories into one, performing
the library reduction and finally installing some additional components, for example by
calling appropriate "make install"-commands in the directory cvsdir/cdk/root.

From the flashable directories, partition image files are created using the commands
$(MKJFFS2), $(MKCRAMFS), and $(MKSQUASHFS). The expansion of these
commands will be determined during the configuration run.

Finally, the partition images are combined with a suitable u-boot bootloader, packed in a
flfs-partition image, to a full images using the flashmanage.pl program, or, in the
case of a jffs2-image, simply concatenated together.

The major targets are listed next.

flash-gui.imgXx
This has as only prerequisite the file $(flashprefix)/gui.imgXx. Defined
in the file make/flash-expand-targets.mk.
$(flashprefix)/gui-filesystem.imgXx.
The partition images (root-gui.filesystem, possibly var-gui..jffs2, and
filesystem.flfsXx) are combined to a full image. Defined in
make/fullimages.mk.
$(flashprefix)/root-gui.filesystem

The Architecture of newmake

Page 8
Built with Apache Forrest
http://forrest.apache.org/

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/rootutils.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/tuxbox_tools.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/tuxbox_tools.mk?rev=1.1.2
flash-yadds-newmake.html
http://forrest.apache.org/
http://forrest.apache.org/

The partition image is created from the flashable directory
$(flashprefix)/root-gui-filesystem. Defined in
make/partition-images.mk.
$(flashprefix)/var-gui.jffs2
The partition image is created from the flashable directory
$(flashprefix)/var-gui. Defined in make/partition-images.mk.
$(flashprefix)/filesystem.flfsXx
The appropriate u-boot bootloader is build, and packed into the flfs-partition
image, using the program mkflfs (code residing in
cvsdir/hostapps/mkflfs), which may be build when needed. Defined in
make/partition-images.mk.
$(flashprefix)/root-gui-filesystem
The contents of the directories root, root-filesystem, and root-gui are first
copied together into this directory, library reduction is performed by "making"
the target $(flashprefix)/root-gui-filesystem/lib/ld.so.1,
bootlogos are installed (if applicable), some additional files are installed, for
example by calling "make install" in the directory cvsdir/cdk/root.
$(flashprefix)/var-gui
The contents of the directories root/var and root-gui/var are first copied
together into this directory. Bootlogos are installed (if applicable), some
additional files are installed, for example by calling "make install" in the
directory cvsdir/cdk/root.
$(flashprefix)/root-gui-filesystem/lib/ld.so.1
Due to the limited flash memory of the dBox (8 MiB), it is not feasible just to
include all possible shared libraries in the image. This step, called "library
reduction", makes sure that only actually needed libraries are included, and
that they are reduced in size as much as possible. Executable files and
shared libraries are stripped (= symbols removed) to reduce their size. The
necessary libraries are gathered together, mainly from cdkroot, as needed.
The work is carried out by the mklibs program. Unneeded files are deleted.
The file ld.so.1 is the runtime loader, and serves as a "marker file" for
make, in that the make target has many more "side effects" than just creating
this file. The target is defined in the file make/reduce-libs.mk.
$(flashprefix)/root-gui
"Installation" of the corresponding GUI. There is a synonym (target having this
as only prerequisite, and no actions) flash-gui. Defined in
make/neutrino.mk and make/enigma.mk.
$(flashprefix)/root-filesystem
Installation of kernel and drivers for an image having filesystem as its root file
system type. Defined in make/flashroot-fs.mk.
$(flashprefix)/root
Essentially, all components, which do not depend either of the GUI, nor of the
file system type of the root file system are installed here. Do not confuse with

The Architecture of newmake

Page 9
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

non-GUI components; for example plugins usable by any GUI are also
installed here. This target does not depend on very much, instead it calls
make recursively, to install required components. We do not describe this in
further detail; the interested reader is referred to the file
make/flashroot.mk. Many of the targets there, for example flash-ftpd
are the flash versions of the yadd targets described above, of course then
without the flash- prefix.

7. Odds and Ends

7.1. GNU Make "Order-Only Prerequisites"

GNU Make 3.80 introduced a facility, the "order-only prerequisites", that I have found
indispensible for newmake. (For this reason, GNU make 3.80 is required for newmake,
while HEAD-make is satisfies with 3.79.) Since this feature is not very well known, the
name is badly chosen, and the description in the manual not very enlightening, I explain it
in detail next.

Consider the following Makefile:

buildir=/home/me/somewhere
sourcedir=/home/me/somewhereelse

$(builddir)/prog: $(sourcedir)/prog.c $(builddir)
$(CC) -o /tmp/foobar $<
sleep 1
mv /tmp/foobar $@

$(builddir):
mkdir $@

The intention is to create the build directory (if required), and then to compile prog in it.
This also works. However, the next time make is issued, the compilation is redone!
Why? Since the target depends on $(builddir), which gets its timestamp set by the
mv-command, the target is older than its prerequisite ($(builddir)), and thus is
scheduled for re-making! (sleep 1 is inserted in the example to guarantee that the file
system dates from prog and the directory differs; it is hard to make a really simple
realistic example.) This is most likely not what the Makefile-author had in mind. What is
needed is a way to say: $(builddir) need exist, but, as long as it exists, its date should
never be taken into account. This is exactly the "order-only" (better would be
"existence-only") prerequisite does. Order-only prerequisites are separated from normal
prerequisites using the bar "|". Thus, changing the first prerequisite line to:
$(builddir)/prog: $(sourcedir)/prog.c | $(builddir)

achieves the effect the author of the original makefile wanted.

7.2. Maneuvering within the make sources

The Architecture of newmake

Page 10
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Emacs users can maneuver quite comfortable within the make sources. For this, first issue
the shell command "make TAGS" in the directory cvsdir/cdk, thereby creating a
so-called TAGS-file. Now it will be possible to use the command find-tag (normally
bound do M-.) to directly jump to the file that defines a particular target. Also other
editors have similar tags-support.

8. References
• The GNU Make manual, online version. The only Make book you need.
• The Autoconf manual, online version.
• The Automake manual, online version (slightly outdated version).
• The GNU Coding standards. There is good stuff in here. Unfortunately, not observed

by the Tuxbox project.
• GNU Autoconf, Automake, and Libtool by Gary V. Vaughan, Ben Elliston, Tom

Tromey and Ian Lance Taylor. I just discovered it, and have not read this (yet),
however, the table of contents looks very promising.

9. Appendix. Top level Makefile.am.
Makefile for Tuxbox

all:
@echo "You probably do not want to build all possible targets."
@echo "Sensible targets are, e.g. yadd-enigma or

flash-neutrino-jffs2-2x."
@echo "If you REALLY want to build everything, then \"make

everything\""

if TARGETRULESET_FLASH
everything: yadd-all flash-all-all-all serversupport extra
else
everything: yadd-all extra serversupport
endif

##
High-level yadd targets

bare-os: yadd-u-boot kernel-cdk driver yadd-etc busybox modutils tuxinfo
@TUXBOX_YADD_CUSTOMIZE@

yadd-none: bare-os config tuxbox_tools procps ftpd yadd-ucodes version
@TUXBOX_YADD_CUSTOMIZE@

yadd-micro-neutrino: bare-os config yadd-ucodes camd2 switch neutrino
@TUXBOX_YADD_CUSTOMIZE@

yadd-neutrino: yadd-none neutrino-plugins fx2-plugins neutrino
@TUXBOX_YADD_CUSTOMIZE@

yadd-enigma: yadd-none enigma-plugins fx2-plugins enigma
@TUXBOX_YADD_CUSTOMIZE@

The Architecture of newmake

Page 11
Built with Apache Forrest
http://forrest.apache.org/

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/autoconf/manual/index.html
http://www.gnu.org/software/automake/manual/automake.html
http://www.gnu.org/prep/standards/
http://sources.redhat.com/autobook/
http://forrest.apache.org/
http://forrest.apache.org/

yadd-lcars: yadd-none lcars
@TUXBOX_YADD_CUSTOMIZE@

yadd-all: yadd-none plugins neutrino enigma lcars
@TUXBOX_YADD_CUSTOMIZE@

extra: libs libs_optional contrib_apps fun dvb_apps root_optional udev
devel bash

Set up some default values (used only by serversetup).
include make/defaultvalues.mk

Set up the build environment
include make/buildenv.mk

Set up the cross compilation enironment, including linux kernel
source and directory structure
include make/bootstrap.mk

The automounter (optional)
include make/automount.mk

The busybox (implements most standard Unix commands, like ls,...)
include make/busybox.mk

Populate the etc directory in YADD
include make/etc.mk

The ftpd
include make/ftpd.mk

Some core tools (important and less important)
include make/rootutils.mk

A number of libraries, some of which necessary for neutrino or enigma
include make/contrib-libs.mk

Some non-GUI applications, none of which are essential
include make/contrib-apps.mk

Tools (debugger etc) for the Tuxbox developer
include make/development-tools.mk

The kaffe java-implementation (nonessential, presently does not build)
include make/java-stuff.mk

Gaming platforms (gnuboy scummvm sdldoom)
include make/fun.mk

Nonessential DVB application
include make/dvb-apps.mk

Bluetooth (nonessential)
include make/bluetooth.mk

FUSE and djmount for uPnP support (non-essential)
include make/upnp.mk

The u-boot boot loader

The Architecture of newmake

Page 12
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

include make/u-boot.mk

Build kernel and its drivers
include make/linuxkernel.mk

Install dvb configuration files (cables.xml & satellites.xml)
include make/dvb-config.mk

dvbsnoop is a tool for analyzing dvb streams (non-essential)
include make/dvbsnoop.mk

A nonessential library
include make/libdvb++.mk

The zapit daemon
include make/zapit.mk

More dvb tools, of which only streampes is installed per default
include make/dvb_tools.mk

More misc libs, mostly nonessential
include make/misc_libs.mk

Misc tools, not essential
include make/misc_tools.mk

Enigma GUI
include make/enigma.mk

nonessential entertainment, like "screensavers" for the lcd display
include make/funstuff.mk

The LCARS GUI
include make/lcars.mk

LCD tools
include make/lcd.mk

Essential, and some less essential, libraries
include make/tuxbox_libs.mk

A small, but absolutely essential library
include make/libtuxbox.mk

The Neutrino GUI
include make/neutrino.mk

Plugins
include make/plugins.mk

Some small command line tools, several of which are essential
include make/tuxbox_tools.mk

Application that run on the build host
include make/hostapps.mk

Generate some support files for a YADD- or flashing-server
include make/serversupport.mk

The Architecture of newmake

Page 13
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

Optionally install ucodes in the image
include make/ucodes.mk

Generate a /.version file in the image
include make/version.mk

if TARGETRULESET_FLASH
High-level flash targets are:

flash-[neutrino,enigma,all]-[cramfs,squashfs,jffs2,all]-[1x,2x,all]
Expand all flash targets containg the word "all"
include make/flash-expand-targets.mk

Create complete images ("without BN bootloader")
include make/fullimages.mk

Create images of the root and var file systems
include make/partition-images.mk

Create root and var filesystems, ready for image creation
include make/flashable-dirs.mk

Strip libraries of symbols not needed.
include make/reduce-libs.mk

Create the root file systems for jffs2-only, cramfs, and squashfs
images (containing kernel but not GUI)
include make/flashroot-fs.mk

Create the root file system, without kernel and GUI
include make/flashroot.mk

The streampes stuff
include make/flash-streampes.mk

Build distribution lists in neutrino internet update format
include make/distribution-lists.mk

/etc/cramfs.urls contains URLs for update lists
include make/cramfs.urls.mk
endif

Files not to be deleted, even though they are intermediate products
include make/precious.mk

"Phony" make targets
include make/phony.mk

Create the TAGS file
include make/tags.mk

A number of cleaning targets
include make/cleantargets.mk

Target for building source distributions (hardly used these days of
CVS :-)
include make/disttargets.mk

Give the user rope to hang himself :-). (Note: read from the

The Architecture of newmake

Page 14
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

generated Makefile during make run, automake or configure does not
see it.)
-include ./Makefile.local

The Architecture of newmake

Page 15
Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

	1 Revision history
	2 Introduction
	3 Organization of the file systems
	3.1 cvsdir
	3.2 cvsdir/cdk
	3.3 cdk
	3.4 cdkroot
	3.5 cdkflash
	3.6 bootprefix

	4 Organization of the files for Make
	5 Download-unpack-patch-configure-build-install-clean targets
	6 Three main sets of targets
	6.1 The development environment CDK
	6.2 YADD builds
	6.3 Flash images

	7 Odds and Ends
	7.1 GNU Make "Order-Only Prerequisites"
	7.2 Maneuvering within the make sources

	8 References
	9 Appendix. Top level Makefile.am.

