The Architecture of newmake

Table of contents

RS YIS To T g I g o OSSPSR
P28 1 011 18 o1 o o OSSR OTUUURPR PRSP
3 Organization Of the file SYSIEMS.........ooi s

T T 01V | R

3.6 DOOLPIEFIX... ..t e
4 Organization of the filesfor MaKe...........oooiiiiiiiiie s
5 Download-unpack-patch-configure-build-install-clean targets............cccceveieeiiecnenns

6.3 FlaSh IMAGES......ceeieerieee e
A 0 [0 1S3> o =1 o SRR 10
7.1 GNU Make "Order-Only PrereqUISItESooeerierierienieeiesee e 10
7.2 Maneuvering within the make SOUICES...........ccccceeiie e 10
B REFEIEINCES.c.eicti ettt bttt b e b et 11
9 AppendiX. Top level MaKefile.am..........ccccveiiieiieeceseee e 11

http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

1. Revision history

2006-04-15 Initial version.
2006-04-17 Added the References section.

2. Introduction

The present documents tries to give a description of the involved concepts in newmake.
The emphasisis on concepts, not on details. It will describe alarge number, but not all of
the target. It does not aim at a complete up-to-date descriptions of all targets, their
prerequisites, side effects, etc. For this, the reader is referred to the sources, which even
contains some comments(!).

Good documentation is not program code translated to English.

The reader is supposed to know the "introductory” document, and to have some
experience and understanding of compiling programsin the GNU
automake/autoconf-environment.

The Tuxbox build system has grown over along period of time. The origina developers
are, with very few exceptions, no longer active within the project. In severa cases, quite
horrible techniques have been employed. Newmake is an attempt to clean up some of the
problems; to solve it asit should have been done the first time. However, | have not went
through al components. There are still some fundamental problems inherited from "old
make".

Tuxbox uses the GNU automake/autoconf system. Understanding this on the surfaceis
not too hard, however understanding the inner workings, and its customizationsis not a
trivial undertaking. Here we just mention that from the fileconf i gur e. ac the
non-interactive configuration script conf i gur e is created, while aMakefileis
generated from the file Makef i | e. am For this, some Tuxbox-specific m4-macros are
foundinthefileaci ncl ude. n4.

3. Organization of the file systems

3.1. cvsdir

Thetop level directory that was checked out from CV S (it contains a subdirectory named
cdk) will be denoted cvsdir. (There is no make-variable with that name!)

3.2. cvdir/cdk

Located as a subdirectory to cvsdir. Thisisthe directory where the make-commands are

Page 2

flash-yadds-newmake.html
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/configure.ac?rev=1.147.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/Makefile.am?rev=1.480.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/acinclude.m4?rev=1.8.4
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

issued. Corresponds to the make-variable bui | dpr ef i x.

3.3. cdk

Thefile system $(host pr ef i x) , for example/ t uxbox/ cdk, contains the "Cross
Development Kit (CDK)". (We will refer to it as cdk.) Contained therein is the crossC
and C++ compiler (with support files), as a number of utilities for creating and

mani pul ating programs to be run on the dBox. Also, some programs, built during the
tuxbox build, like nkf | f s areinstalled here. Include-files for the C++-compiler and
stdc++ library are found here. Documentation files for some of the installed component
(man- and GNU info-files) are also installed. Thisdirectory hierarchy is build during the
"bootstrap” build.

3.4. cdkroot

Thefile hierarchy $(t ar get prefi x) (typicaly/t uxbox/ cdkr oot) ismounted as
root file system for a Y ADD-setup. (We will refer to it as cdkroot.) However, it plays
some moreroles. In the original makefile, images were built by first installing (using the
component's makefiles) in cdkroot, then selectively copying over selected files to the
image file systems. The directly hierarchy is"mainly" built during the cdk build,
however, some crucial components (belonging to the C library gl i bc) areinstalled
during the "bootstrap” build.

Through symbolic links, the above described cdk-directory depends on cdkroot, and
secondarily, through links from cdkroot to the kernel sources, on the kernel sourcesin
cvsdir/ cvs/ | i nux. Inthefuture, it would be desirable to eliminate this dependency, in
my opinion aso if this means multiple copies of the same file. "Single sourcing" does not
prohibit multiple copies, it means that you know where every copy came from.

It is often tempting to delete cdkroot, in order to bring the compilation environment back to the state where the cross
development environment CDK has been build, but none of the real Tuxbox software. For reasons just described, this will
break CDK.

3.5. cdkflash

Thefile hierarchy $(f | ashpr efi x) (typicaly / t uxbox/ cdkf | ash, henceforth
denoted by cdkflash) isa scratch areafor building images. It will be described in detail
later. It can be deleted when needed/desired without any side effects.

3.6. bootpr efix

For the purpose of this article, boot pr ef i x isthe target location of the yadd kernel and
the corresponding u- boot boot loader. Typicaly, thisisthe base directory for the TETP
service.

Page 3

dboxserver.html#The+TFTP+Server
dboxserver.html#The+TFTP+Server
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

4. Organization of thefilesfor Make

There are hundreds of targets in the top level "Makefile". To improve the overview, it has
been split in different components. The top level Makef i | e. am inthe current version
1.480.2.21, is shown in the Appendix. Thisfile first defines some high-level targets (in
terms of some other targets), then it includes alarge number (presently 54) of makefile
fragments, defining other targets. The inclusion is preceeded by a comment stating the
purpose of the included fragment.

5. Download-unpack-patch-configur e-build-install-clean tar gets

The Tuxbox software needs a number of third-party software. The build mechanism will
download the needed software sources on demand. These are stored in the directory
cvsdir/ cdk/ Ar chi ve. (When having severa source trees on the disk, it isagood idea
to share this directory, to save disk space and downloads.) When "make-ing" the package,
the following things occur:

1. The package source code, typically witha. tar. gz or.tar. bz2 extension, is
downloaded to the cvsdir/ cdk/ Ar chi ve directory,

2. ltisunpacked into atemporary directory, residing in the cdk directory,

3. Insome cases, a patch (residing in the directory cvsdir/ cdk/ Pat ches isapplied,

4. The packageis build using a package specific build command, typicaly a
configure-command, followed by a make-command, possibly with parameters,

5. The packageisinstaled, typically in cdkroot, typically with a"make
install"-command, possibly with parameters,

6. Thebuild directory is deleted,

7. The successful build is recorded by creating a zero-length file, having the same name
as the package, in the directory cvsdir/ cdk/ . deps.

It was attempted to have this behavior completely parameterized, using the files

rul es-make,rul es-archive,rules-installrules-install-flash.To
thisend, r ul es- make defines the package name, version, name of the build directory,
name of the current source code distribution file, acommand to unpack and possibly to
patch. Thefiler ul es- ar chi ve contains a mapping from file names (as given in the
rul es- make file) to download-URLs. Finaly, r ul es-instal | and

rul es-install-fl ash containthe commandsto install the package. HEAD-make,
if configured for image building, first consultsr ul es-i nstal | -f1 ash for theinstall
rules, if not found there, it searchesr ul es-i nst al | . If not configured for flash
images, it only searchesr ul es-i nst al | . Newmake, for compatibility, first searches
rules-install-flash,thenrul es-install.

To the implementation: For every such package, conf i gur e. ac containstheacall to
the local autoconfig macro TUXBOX _RULES MAKE (definedinaci ncl ude. mi),
using the package name as argument. Thus, during executing of conf i gur e, afew Perl
programs are executed, operating on ther ul es- *, thereby defining the shell variables

Page 4

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-make
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-archive
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-make
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-archive
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-make
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install-flash
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/rules-install
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/configure.ac?rev=1.147.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/acinclude.m4?rev=1.8.4
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

DEPENDS _package, DI R_package, PREPARE_package, VERSI ON_package,

| NSTALL _package, CLEANUP_package. Thus, in Makef i | e. am(or itsincluded
parts), constructs like @Q/ERSI ON_package@can be used; when automake creates
Makef i | e out of Makef i | e. am these will be appropriately substituted.

This has been an interesting, but not completely successful experiment. The
"parameterization” of the build has not been a success; every make rule still looks
different. To keep used versionsin a separate file still isa good idea, however, this can
just as well be achieved with the include-mechanism of (auto-)make.

A re-write would be desirable.

6. Three main sets of targets

There are three main categories of targetsin the Makefile: Targets for building the cross
compilation environment ("CDK"), targets for YADDSs, and targets for flash image
creation.

6.1. The development environment CDK

Thetop level target isboot st r ap. It turns out, that thisis nothing but the gcc target.
Almost all non-cdk targets depend on this; in the case this dependency is not in the
Makefile, it islikely abug. There are five components required:

directories
Sets up a directory skeleton in cdk and cdkroot.
binutils
Installs the GNU binutils, containing programs for creating and manipulating
binary files, like the assembler as and loader | d.
i nuxdir
Installs the sources for the Linux kernel. This is necessary for building the
compiler, since the latter needs include files from the kernel.
glibc
The main C library. Since the C compiler needs this, first a "bootstrap
compiler” (target boot st r ap_gcc, a mini C compiler, not needing gl i bc,
just intended to compile gl i bc) is first built.
gcc
The C cross compiler, in both C and C++-version.
These targets, with the exception of di r ect ori es, areall

downl oad-unpack-patch-configure-build-install-clean targets, in the sense above. The
rulesare all found in the file nake/ boot st r ap. nk.

6.2. YADD builds
Useful high-level targetsinclude: yadd- neut ri no, yadd- 1| car s, yadd- eni gna,

Page 5

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/bootstrap.mk?rev=1.1.2
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

andyadd-al | .

yadd- neutrino

Installs the targets yadd- none, neut ri no, as well as the plugins appropriate
for Neutrino (targets neut ri no- pl ugi ns and f x2- pl ugi ns).

yadd- m cro-neutrino

This target has mainly theoretical interest, to document the minimal usable
Neutrino installation.

yadd- eni gma

Installs the targets yadd- none, eni g, as well as the plugins appropriate
for Enigma (targets eni gma- pl ugi ns and f x2- pl ugi ns).

yadd-1 cars

Installs the targets yadd- none, and | cars.

yadd- al |

Installs the targets yadd- none, neut ri no, eni gnma, and | cars.

yadd- none

The GUI-independent parts on a working yadd, consisting of bar e- 0s,
together with a number of other, non-GUI-based targets (confi g,

t uxbox_t ool s, procps, ft pd, yadd- ucodes, ver si on).

bar e- os

The minimal setup to run Linux on the dBox, allows to login and | s. Depends
on targets yadd- u- boot , ker nel - cdk, dri ver, yadd- et ¢, busybox,
nodutils, t uxi nfo.

pl ugi ns

Depends on neut ri no- pl ugi ns, eni gma- pl ugi ns, and f x2- pl ugi ns.
neut ri no- pl ugi ns

The name is strictly speaking misleading; the target installs plugins usable
with any GUI, except for the plugins in target f x2- pl ugi ns. Presently, these
are tuxmail, tuxtxt, tuxcom, tuxcal, and vncviewer (all of these correspond to
their own individual targets). Defined in make/ pl ugi ns. nk.

eni gma- pl ugi ns

Plugins that require Enigma. Defined in make/ pl ugi ns. nk.

f x2-pl ugi ns

Plugins that require the fx2-library. Usable by any GUI. Defined in

make/ pl ugi ns. nk.

neutrino

The Neutrino GUI. Defined in make/ neut ri no. nk.

eni gma

The Enigma GUI. Defined in make/ eni gma. nk.

| cars

The LCARS GUI. Defined in make/ | cars. nk.

config

Installs some configuration files, presently cabl es. xm and

satellites. xm . Defined in neke/ dvb- confi g. nk.

Page 6

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/plugins.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/plugins.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/plugins.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/neutrino.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/enigma.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/lcars.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/apps/dvb/config/cables.xml
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/apps/dvb/config/satellites.xml
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/dvb-config.mk?rev=1.1.2
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

t uxbox_tool s

installs several different tools, most of which are pretty special, some (like
swi t ch) absolutely essential. Defined in nrake/ t uxbox_t ool s. nk.
procps

A download-unpack-patch-configure-build-install-clean target. Installs the
commands ps and t op. Defined in make/ rootutils. nk.

ftpd

The ftp-daemon. A download-unpack-patch-configure-build-install-clean
target. Defined in nake/ f t pd. nk.

yadd- ucodes

Provided that - - wi t h- ucodesdi r was given when configuring, installs that
directory's content in the yadd. Defined in nake/ ucodes. nk.

ver si on

Creates the / . ver si on-file in the yadd. Defined in make/ ver si on. nk.
yadd- u- boot

Creates both the "smart" u- boot , as the "dumb" u- boot - yadd, both in the
$(boot prefix) directory. The default u- boot relies on a DHCP-server (a
bootp server will not do) to tell the name of the kernel file, and the location of
the NFS-root. Sometimes this is not available, for example when using the
Windows dBox manager. For these cases, an alternate u-boot is provided,
which, out-of-the-box, has the file name u- boot - yadd. This offers less
flexibility, having most file names/paths compiled in. Using this u-boot for
booting, the file name of the kernel is ker nel - yadd, and the NFS root will be
yaddr oot . As a side effect, a tool called nki mage, needed for building some
images, will be installed in cdk/ bi n. (This can also be achieved by calling the
target $(host prefi x)/ bi n/ nki mage directly). Defined in

make/ u- boot . nk.

ker nel - cdk

Creates and installs the Linux kernel, using the path name

$(boot prefix)/kernel - cdk. Also installs the kernel and a map file in
cdkroot/ boot . Defined in make/ | i nuxker nel . nk.

driver

Compiles and installs device drivers, corresponding to the kernel. Defined in
make/ | i nuxkernel . nk.

yadd- et c

Installs the content of the et ¢ directory. Defined in nake/ et c. nk.
busybox

Configures the busybox for usage with yadd, compiles and installs it. This is
an download-unpack-patch-configure-build-install-clean target. Defined in
make/ busybox. nk.

nmodutil s

Installs some utilities for manipulating loadable kernel modules, e.qg.
modprobe. This is an download-unpack-patch-configure-build-install-clean

Page 7

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/tuxbox_tools.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/rootutils.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/ftpd.mk?rev=1.1.2
flash-yadds-newmake.html#Customization
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/ucodes.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/version.mk?rev=1.1.2
dboxserver.html#The+DHCP+Server
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/u-boot.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/linuxkernel.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/linuxkernel.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/etc.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/busybox.mk?rev=1.1.2
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

target. Defined in make/ root util s. nk.

t uxi nfo

Installs the crucial t uxi nf o program. This target is actually a subset of the
target t uxbox_t ool s. Defined in neke/ t uxbox_t ool s. nk.

cand2

Installs the cand2 program. This target is actually a subset of the target

t uxbox_t ool s. Defined in nake/ t uxbox_t ool s. nk.

6.3. Flash images

The high-level flash targets

flash-[neutrino, enigma,all]-[cranfs, squashfs,jffs2]-[1x, 2x,all]
were introduced in the introductory article. Here we will describe the image building
process in more detail. In the sequel, gui will denote either neut ri no or eni gnma,
filesystem will denote either cr anf s, squashf s, orj f f s2 (thefile system of the root
partition), whilei ngXx will denote either i nglx ori ng2x.

Fundamental for the creation of a gui-filesystem. i ngXx-image are the three directory
hierarchies$(f | ashr oot)/ r oot (containing parts not depending on the root file
system type or the GUI), $(f | ashr oot) / r oot - filesystem (containing parts
depending on the root file system, in particular the kernel and the drivers),

$(fl ashroot)/root - gui (containing the GUI component). There are no "short"
make targets for these directories, however they are all, with their full path names, make
targets. The flashable directories (r oot - gui-filesystemand var - gui) are created by
copying the contents of the previously mentioned three directories into one, performing
the library reduction and finally installing some additional components, for example by
calling appropriate "make install"-commands in the directory cvsdir/ cdk/ r oot .

From the flashable directories, partition image files are created using the commands
$(MKIFFS2) , $(MKCRAMFS) , and $(MKSQUASHFS) . The expansion of these
commands will be determined during the configuration run.

Finally, the partition images are combined with a suitable u-boot bootloader, packed in a
flfs-partition image, to afull imagesusing thef | ashnmanage. pl program, or, in the
case of ajffs2-image, smply concatenated together.

The major targets are listed next.

f I ash- gui. i ngXx

This has as only prerequisite the file $(f | ashpr ef i x) / gui. i ngXx. Defined
in the file make/ f | ash- expand-t argets. nk.

$(fl ashprefix)/gui-filesystem. i ngXx.

The partition images (r oot - gui.filesystem, possibly var - gqui.. | ff s2, and
filesystem. f | f sXx) are combined to a full image. Defined in

make/ ful | i mages. nk.

$(fl ashprefix)/root - gui.filesystem

Page 8

http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/rootutils.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/tuxbox_tools.mk?rev=1.1.2
http://cvs.tuxbox.org/cgi-bin/viewcvs.cgi/*checkout*/tuxbox/cdk/make/tuxbox_tools.mk?rev=1.1.2
flash-yadds-newmake.html
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

The partition image is created from the flashable directory
$(flashprefix)/root - qui-filesystem. Defined in

make/ partition-inmges. nk.

$(fl ashprefix)/var-gui.jffs2

The partition image is created from the flashable directory
$(flashprefix)/var-qui. Defined in make/ partiti on-i mages. nk.
$(fl ashprefix)/filesystem. f|fsXx

The appropriate u-boot bootloader is build, and packed into the flfs-partition
image, using the program nkf | f s (code residing in

cvsdir/ host apps/ nkf | f s), which may be build when needed. Defined in
make/ partition-inmges. nk.

$(fl ashprefix)/root-gui-filesystem

The contents of the directories r oot , r oot - filesystem, and r oot - gui are first
copied together into this directory, library reduction is performed by "making"
the target $(f | ashprefi x)/r oot - gui-filesystem/ 1 i b/l d. so. 1,
bootlogos are installed (if applicable), some additional files are installed, for
example by calling "make install" in the directory cvsdir/cdk/root.

$(fl ashprefix)/var-gui

The contents of the directories r oot / var and r oot - gui/ var are first copied
together into this directory. Bootlogos are installed (if applicable), some
additional files are installed, for example by calling "make install" in the
directory cvsdir/cdk/root.

$(fl ashprefix)/root-gui-filesystem/1ib/ld.so.1

Due to the limited flash memory of the dBox (8 MiB), it is not feasible just to
include all possible shared libraries in the image. This step, called "library
reduction”, makes sure that only actually needed libraries are included, and
that they are reduced in size as much as possible. Executable files and
shared libraries are stripped (= symbols removed) to reduce their size. The
necessary libraries are gathered together, mainly from cdkroot, as needed.
The work is carried out by the mklibs program. Unneeded files are deleted.
The file | d. so. 1 is the runtime loader, and serves as a "marker file" for
make, in that the make target has many more "side effects" than just creating
this file. The target is defined in the file make/ r educe- 1 i bs. nk.

$(fl ashprefix)/root-gui

"Installation” of the corresponding GUI. There is a synonym (target having this
as only prerequisite, and no actions) f | ash- gui. Defined in

make/ neut ri no. nk and make/ eni gma. nk.

$(fl ashprefix)/root - filesystem

Installation of kernel and drivers for an image having filesystem as its root file
system type. Defined in make/ f | ashr oot - f s. nk.
$(flashprefix)/root

Essentially, all components, which do not depend either of the GUI, nor of the
file system type of the root file system are installed here. Do not confuse with

Page 9

http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

non-GUI components; for example plugins usable by any GUI are also
installed here. This target does not depend on very much, instead it calls
make recursively, to install required components. We do not describe this in
further detail; the interested reader is referred to the file

make/ f 1 ashr oot . nk. Many of the targets there, for example f | ash- f t pd
are the flash versions of the yadd targets described above, of course then
without the f | ash- prefix.

7. Odds and Ends

7.1. GNU Make" Order-Only Prerequisites’

GNU Make 3.80 introduced afacility, the "order-only prerequisites’, that | have found
indispensible for newmake. (For this reason, GNU make 3.80 is required for newmake,
while HEAD-make is satisfies with 3.79.) Since this feature is not very well known, the
name is badly chosen, and the description in the manual not very enlightening, | explain it
in detail next.

Consider the following Makefile:

bui | di r =/ hone/ ne/ sonewher e
sour cedi r =/ honme/ ne/ sonmewher eel se

$(buil ddir)/prog: $(sourcedir)/prog.c $(builddir)
$(CC) -o /tnp/foobar $<
sleep 1
mv /tnp/ f oobar $@

$(buil ddir):

nkdir $@
The intention is to create the build directory (if required), and then to compile pr og init.
This also works. However, the next time make isissued, the compilation is redone!
Why? Since the target depends on $(bui | ddi r) , which getsits timestamp set by the
nmv-command, the target is older than its prerequisite ($(bui | ddi r)), and thusis
scheduled for reemaking! (sl eep 1 isinserted in the example to guarantee that the file
system dates from prog and the directory differs; it is hard to make areally simple
realistic example.) Thisis most likely not what the Makefile-author had in mind. What is
needed isaway to say: $(builddir) need exist, but, aslong asit exists, its date should
never be taken into account. Thisis exactly the "order-only" (better would be
"existence-only") prerequisite does. Order-only prerequisites are separated from normal
prerequisites using the bar "| ". Thus, changing the first prerequisite line to:
$(buil ddir)/prog: $(sourcedir)/prog.c | $(builddir)
achieves the effect the author of the original makefile wanted.

7.2. Maneuvering within the make sour ces

Page 10

http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

Emacs users can maneuver quite comfortable within the make sources. For this, first issue
the shell command "make TAGS" in the directory cvsdir/ cdk, thereby creating a
so-called TAGS-ile. Now it will be possible to use the command f i nd- t ag (normally
bound do M-.) to directly jump to the file that defines a particular target. Also other
editors have similar tags-support.

8. References

« The GNU Make manual, online version. The only Make book you need.
« The Autoconf manual, online version.

» The Automake manual, online version (slightly outdated version).

The GNU Coding standards. There is good stuff in here. Unfortunately, not observed
by the Tuxbox project.

« GNU Autoconf, Automake, and Libtool by Gary V. Vaughan, Ben Elliston, Tom
Tromey and lan Lance Taylor. | just discovered it, and have not read this (yet),
however, the table of contents looks very promising.

9. Appendix. Top level Makefile.am.

Page 11

http://www.gnu.org/software/make/manual/make.html
http://www.gnu.org/software/autoconf/manual/index.html
http://www.gnu.org/software/automake/manual/automake.html
http://www.gnu.org/prep/standards/
http://sources.redhat.com/autobook/
http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

Built with Apache Forrest
http://forrest.apache.org/

http://forrest.apache.org/
http://forrest.apache.org/

The Architecture of newmake

Page 15

http://forrest.apache.org/
http://forrest.apache.org/

	1 Revision history
	2 Introduction
	3 Organization of the file systems
	3.1 cvsdir
	3.2 cvsdir/cdk
	3.3 cdk
	3.4 cdkroot
	3.5 cdkflash
	3.6 bootprefix

	4 Organization of the files for Make
	5 Download-unpack-patch-configure-build-install-clean targets
	6 Three main sets of targets
	6.1 The development environment CDK
	6.2 YADD builds
	6.3 Flash images

	7 Odds and Ends
	7.1 GNU Make "Order-Only Prerequisites"
	7.2 Maneuvering within the make sources

	8 References
	9 Appendix. Top level Makefile.am.

